HOME      •      SEARCH      •      EMAIL    •     ABOUT

Family Bignoniaceae
Crescentia cujete Linn.

Hu lu shu

Scientific names Common names
Crescentia acuminata Kunth Ayale (Engl.)
Crescentia arborea Raf. Cujete (Span., Tag.)
Crescentia cuneifolia Gardn. Calabash tree (Engl.)
Crescentia cujete Linn. Kalebas (Engl.)
Crescentia fasciculataa Miers.  
Crescentia plectantha Miers.  
Crescentia pumila Raf.  
Crescentia spathulata Miers.  
Crescentia cujete L. is an accepted name The Plant List

Other vernacular names
CHINESE: Hu lu shu.
DUTCH: Kalebasboom.
FRENCH: Calebassier.
GERMAN: Kalebassenbaum.
ITALIAN: Calebassa Guiana, Icara.
PORTUGUESE: Coité, Cuieira, Cuité, Cujeté.
SPANISH: Calabacero, Crescencia, Guacal, Guiro, Jicara, Morro, Cujete.

Cujete is a smooth, much-branched tree growing to a height of 4 to 5 meters. Branches are arching with close-set clusters of leaves. Leaves are alternate, often fascicled at the nodes, oblanceolate, 5 to 17 centimeters long, glossy at the upper surface, blunt at the tip and narrowed at the base. Flowers develop from the buds that grow from the main trunk, yellowish and sometimes veined with purple, with a slightly foetid odor, occurring singly or in pairs at the leaf axils, stalked and about 6 centimeters long, and opens in the evening. Calyx is about 2 centimeters long, and split into two lobes. Fruit is short-stemmed, rounded, oval or oblong, green or purplish, 15 to 20 centimeters in diameter.

- Occasionally cultivated for ornamental purposes.
- Recently introduced from tropical America.

• Phytochemical studies of the fresh fruit pulp report the presence of crescentic acid, tartaric acid, citric, and tannic acids, two resins and a coloring matter than resembles indigo.
• Studies yielded tartaric acid, cianhidric acid, citric acid, crescentic acid, tannins, beta-sitosterol, stigmasterol, alpha and beta amyrins, estearic acid, palmitic acid.
• Study yielded flavonoids quercetin, apigenin with antiinflammatory, antihemorrhagic and anti-platelet aggregation activities.
• Leaves have yielded naphthoquinone, iridoid glycosides, aucubin, plumieride, and asperuloside.
• Phytochemical study of the fruit yielded eight new compounds, along with four known compounds, acanthoside D, ß-D-glucopransoyl benzoate, (R)-1-0-ß-glucopyranosyl-1,3-octanediol
• Fruit yielded four new 11-nor-iridoids: 6-O-p-hydroxybenzoyl-10-deoxyeucommiol, 6-O-benzoyl-10-deoxyeucommiol, 6-O-benzoyl-dihydrocatalpolgenine (a mixture of 3 and 4) with two known iridoids, ningpogenin and 6-O-p-hydroxybenzoylaucubin. (14)
• Study analyzed nutritive and anti-nutritive compositions of fruit pulp in both wet and dry samples: ash 3.74% (dry), ether extract, 4.38% (wet); crude protein 7.67% W, 10.01% D; crude fiber 4.88% D; carbohydrate 15.65% W, 68.13% D. Sodium (Na) showed high value of 3.20% W and o.32% D. (see study below) (3)
• Phytochemical study on the fruit yielded saponins, flavonoid, cardenolides, tannins, and phenol, as well as the presence of hydrogen cyanide. Results also showed relatively low mean concentrations for heavy metals, but high mean concentrations for manganese, iron, zinc, and copper. Values for fat, protein, nitrogen, crude fibre, moisture content, sucrose, fructose, galactose and energy content are quite high viz; 1.13, 8.35, 1.34, 4.28, 84.92, 59.86, 25.09, 18.24 and 88.69%, respectively. (16)
• Constituent analysis of sarcocarp yielded 18 compounds, viz., ningpogenin (1), 6-O-p-hydroxylbenzoyl-aucubin (2), 3,3′-bisdemethylpinoresinol (3), (22E,24R)-ergosta-7,22-dien-3β-ol (4), ergosta-4,6,8 (4), 22-dien-3-one (5), cerevisterol (6), 5α,8α-epidiory-(22E,24R)-ergosta-6,22-dien-3β-ol (7), β-sitosterol (8), daucosterol (9), 3β,5α,9α-trihydroxyergosta-7,22-dien-6-one (10), ergosta-7,22-dien-3-one (11), sesquiterpene (12), 4-hydroxybenzonicacid (13), benzoicacid (14), p-hydroxybenzylethanol (15), p-hydroxybenzylalcohol (16), D-allitol (17), 5-hydroxymethyl-2-furancarboxaldehyde (18). (27)

• Fruit considered aperient, laxative, expectorant.
• Considered anthelmintic, analgesic, antiinflammatory, febrifuge, laxative.

Parts used
Fruit, bark, leaves.

• In India, used as a pectoral, the poultice of pulp is applied to the chest.
• In the West Indies, syrup prepared from the pulp used for dysentery and skin diseases; also used as pectoral.
• In Rio de Janeiro, the alcoholic extract of the not-quite ripe fruit used to relieve constipation
• For erysipelas, the fresh pulp is boiled in water to form a black paste, mixed and boiled with vinegar, spread on linen for dermatologic application.
• The bark is used for mucoid diarrhea.
• Fruit pulp used as laxative and expectorant.
• In the Antilles and Western Africa, fruit pulp macerated in water is considered depurative, cooling and febrifuge, and applied to burns and headaches.
• In West Africa, fruit roasted in ashes is purgative and diuretic.
• In Sumatra, bark decoction used to clean wounds and pounded leaves used as poultice for headaches.
• Internally, leaves used as diuretic.
• Throughout the Caribbean, used as analgesic and anti-inflammatory
• In the Antilles, fresh tops and leaves are ground and used as topical for wounds and as cicatrizant.
• In Venezuela, decoction of bark used for diarrhea. Also, used to treat hematomas and tumors.
• In Costa Rica, used as purgative.
• In Cote-d'Ivoire, used for hypertension because of its diuretic effect.
• In Columbia, used for respiratory afflictions.
• In Vietnam, used as expectorant, antitussive, laxative and stomachic.
Fruit decoction used to treat diarrhea, stomachaches, cold, bronchitis, cough, asthma, and urethritis.
• In Haiti, the fruit of Crescentia cujete is part of the herbal mixtures reported in its traditional medicine.
In the province of Camaguey in Cuba, is considered a panacea.
• In Panama, where it is called totumo, the fruit is used for diarrhea and stomachaches. Also for respiratory ailments, bronchitis, cough, colds, toothaches. headaches, menstrual irregularities; as laxative, antiinflammatory, febrifuge. The leaves are used for hypertension.
• In some countries, the dried shell of the fruit is used to make bowls and fruit containers, decorated with paintings or carvings.
• Used in making maracas or musical rattle..
• In Brazil, the fibrous lining of the fruit is sometimes used as a substitute for cigarette paper.
• A favorite perch for orchids.

Phytochemicals / Fruits:
Previous studies have yielded naphthoquinones and iridoid glucosides. The fruits yielded 15 new compounds, 3 iridoid glucosides, five iridoids, 3 2,4-pentanediol glycosides, along with known compounds.
Iridoids and Iridoid Glucosides / Fruits: Study fruit constituents yielded 16 iridoids and iridoid glucosides. Eight compounds were new, named crescentins I-V and crescentosides A, B, and C. Another eight known compounds were identified as ajugol, 6-O-p-hydroxybenzoylajugol, aucubin, 6-O-p- hydroxybenzoyl-6-epiaucubin, agnuside, ningpogenin, 5,7-bisdeoxycynanchoside and a degradation product of glutinoside. (11)
Nutritive and Anti-Nutritive Composition of Calabash Fruit: Pulp was found to have high mineral concentrations; sodium, highest; calcium, lowest, with high values of thiamine and found to be free from HCN toxicity and suggests useful contributions to human health and nutrition. (see constituents above) (3)
Bioactive Furanonaphthoquinones : Study isolated new and known bioactive compounds showing selective activity toward DNA-repair-deficient yeast mutants. (4)

Antibacterial: In a study of extracts against E. coli and S. aureus, Crescentia cujete showed activity against S. aureus.
Antibacterial: Among several solvents used, only the ethanol extracts showed significant antimicrobial activity against Shigella dysenteriae, Bacillus cereus, B. subtilis, B. megaterium and Staphylococcus aureus. (15)
Snake Venom Neutralizing Effect: In a study of t5 plant extracts used by traditional healers in Colombia for snakebites, 31 had moderate to high neutralizing ability against the hemorrhagic effect of Bothrops atrox venom. C cujete (unripe fruits) was one of 19 that showed moderate neutralization. (10)
Antidiabetic: In a non experimental validation for antidiabetic activity, study yields cyanhidric acid believed to stimulate insulin release. (13)
Crude Oil from Calabash Seed: Crude seed oil was found to have the following composition: saturated acids 19.7%, oleic acid 59.4%, linoleic acid 19.3%, linolenic acid 1.6%. Calabash oil is similar to peanut and olive oils except for its content of linolenic acid, which is an unusual constituent for an oil of low iodine number. (17)
Antioxidant / Leaves and Stem Bark: Study evaluated leaves and bark crude ethanol extracts for antioxidant activity using DPPH, FRP, and TAC assays. Phytochemical screening yielded steroids, flavonoids, tannins, glycosides, and terpenoids. The leaves showed significant free radical scavenging properties compared to the stem bark. There was a clear correlation between antioxidant activity and phenolic content. (18)
Antivenom Activity / Leaves and Stem Bark: Study evaluated the antivenom activity of ethanolic extracts of Crescentia cujete fruit in experimental animals. Results showed significant neutralizing capacity of snake Vipera russelli venom which may be beneficial in the treatment of snake bites. (19)
Anti-Angionesis Effect: Study of Calabash fruit epicarp showed dose-dependent (100% concentration) antiangiogenic effect on chick embryo. Results suggest a potential for halting tumor revascularization. (20)
CNS Depressant Effect: Study evaluated the CNS depressant properties of a crude extract of pulp of fruit of C. cujete. There was significant dose dependent reduction in rearing, grooming, locomotor activity and head dips in mice with an anxiogenic effect on the elevated plus maze test.. Results showed the fruit possess central depressant properties. (21)
Fetal Gestational Effect: Study evaluated an ethanolic fruit extract on Sprague Dawley rats days 6-19 of gestation, the organogenetic period. Findings suggests continuous consumption of higher concentration of the extract during gestation can cause alteration in growth and development of the fetus and changes in maternal organs and blood count. Caution is advised against using the extract during pregnancy. (23)
Pericarp / Metabolites / Toxicity Study: Study of ethanol extract of pericarp yielded three groups of secondary metabolites, i.e., flavonoids, steroids, and triterpenes. Biological study did not show acute toxicity in either tested biological systems or concentrations tested. (24 )
Anti-Mycobacterial / Metabolites / Toxicity Study: Study of aqueous and alcoholic extracts of stem bark and leaves of C. cujete showed inhibitory effect on all of the strains of Mycobacterium tuberculosis used in the study. (25)
Anti-Inflammatory / Antibacterial: Study evaluated the anti-inflammatory and antibacterial potential of C. cujete leaves and stem bark. Results showed dose-dependent anti-inflammatory activity in the HRBC membrane stabilization test and potent antibacterial activity by disc diffusion method. (26)


Godofredo U. Stuart Jr., M.D.

Last Update October 2015

Photos © Godofredo Stuart / StuartXchange
Raw image of Cujete fruit (insert) provided by Arleen Baterbonia

Additional Sources and Suggested Readings
Crescentia cujete / Herbal Index / Lana Dvorkin PharmD, Julia Whelan MS
Crescentia cujete / Iridoids and Other Glycosides from Vietnamese Crescentia cujete
/ Bartholomew I.C. Brai, A.A. Odetola, P.U. Agomo
Journal of Medicinal Food. June 1, 2007, 10(2): 356-360. doi:10.1089/jmf.2006.291.
Nutritive and Anti-Nutritive Compositions of Calabash Fruit Pulp / Marc Nwosu Ogbuagu / Journal of Animal and Veterinary Advances 7 (9):1069-1072, 2008.
Bioactive furanonaphthoquinones from Crescentia cujete
/ Carl E. Heltzel, A. A. Leslie Gunatilaka, Thomas E. Glass, David G. I. Kingston, Glenn Hoffmann, Randall K. Johnson / J. Nat. Prod., 1993, 56 (9), pp 1500–1505 / DOI: 10.1021/np50099a008
Uses of medicinal plants by Haitian immigrants and their descendants in the Province of Camagüey, Cuba./ J Ethnobiol Ethnomed. 2009 May 18;5:16
Common Medicinal Plants of Panama / Karen Dertien
n-Alkyl glycosides and p-hydroxybenzoyloxy glucose from fruits of Crescentia cujete / Phytochemistry Vol 47, Issue 2, January 1998, Pages 259-263 / doi:10.1016/S0031-9422(97)00409-3
Antibacterial properties of tropical plants from Puerto Rico./ Melendez, P et al / Phytomedicine, Volume 13, Issue 4, Pages 272-276
The Calabash (Crescentia cujete) in Folk Medicine / Julia F Morton / © 1968 New York Botanical Garden Press.
Snakebites and ethnobotany in the northwest region of Colombia. Part III: Neutralization of the haemorrhagic effect of Bothrops atrox venom / Otero, R.; Nunez, V et al / Journal of Ethnopharmacology 73 (2000) 233-241.
Iridoids and iridoid glucosides from fruits of Crescentia cujete / Tetsuo Kaneko, Kazuhiro Ohtani et al / Phytochemistry, Vol 46, Issue 5, November 1997, Pages 907-910 / doi:10.1016/S0031-9422(97)00375-0 |
Ethnobotanical Study of Plants Used to Treat Arterial Hypertension, in Traditional Medicine, by Abbey and Krobou Populations of Agboville (Côte-d’Ivoire) / N'guessan Koffi, Tiebre Marie-Solange et al / European Journal of Scientific Research, ISSN 1450-216X Vol.35 No.1 (2009), pp 85-98
Ethnobotanical Study of Plants Used to Treat Diabetes in Traditional Medicine, by Abbey and Krobou Populations of Agboville (Côte-d’Ivoire) / N'guessan Koffi et al / American Journal of Scientific Research, ISSN 1450-223X, Issue 4 (2009), pp 45-58
New Iridoids from the fruits of Crescentia cujete / Gang Wang, Wei Yin, Zhong-Yu Zhou et al / Journal of Asian Natural Products Research, 12:9,770-775.
IN VITRO ANTIBACTERIAL ACTIVITY of Crescentia cujete and Moringa oleifera / Khandaker Rayhan Mahbub, Md. Mojibul Hoq, Monzur Morshed Ahmed, Animesh Sarker / BANGLADESH RESEARCH PUBLICATIONS JOURNAL ISSN: 1998-2003, Volume: 5, Issue: 4, Page: 337-343, July -August, 2011
The chemical constituents of calabash (Crescentia cujete) / Ejelonu BC*, Lasisi AA,Olaremu AG and Ejelonu OC / African Journal of Biotechnology Vol. 10(84), pp. 19631-19636, 26 December, 2011 / DOI: 10.5897/AJB11.1518
Oil from calabash seed, Crescentia cujete L / Natural Sciences Repository
Antioxidant activities of ethanol extracts and fractions of Crescentia cujete leaves and stem bark and the involvement of phenolic compounds / Nandita Das, Md Ekramul Islam, Nusrat Jahan, Mohammad Saiful Islam, Alam Khan, Md Rafikul Islam and Mst Shahnaj Parvin* / Das et al. BMC Complementary and Alternative Medicine 2014, 14:45/ http://www.biomedcentral.com/1472-6882/14/45
Antivenom activity of ethanolic extract of Crescentia cujete fruit
/ Shastry, C. S.; Bhalodia Maulik, M.; Aswathanarayana, B. J. / International Journal of Phytomedicine; January 2012, Vol. 4 Issue 1, p108
Anti-angiogenesis Effect of Calabash Fruit (Crescentia cujete Linn.) Pericarp Fruit via Choriollantoic Membrane Assay: A Potential Agent against Tumour Vascularisation / R. J. I. Tambole, M. J. K. Peteros, J. J. / Alegado Bayugan National Comprehensive High School
CNS depressant properties of the crude extract of Crescentia cujete in mice
/ AO Aderibigbe, T Olufunmilayo, OI Agboola / Planta Med 2013; 79 - PE4 / DOI: 10.1055/s-0033-1352023
Crescentia cujete L. / Synonyms / The Plant List
PRELIMINARY STUDY OF THE EFFECTS OF CALABASH (CRESCENTIA CUJETE) ETHANOLIC FRUIT EXTRACT TO GESTATING SPRAGUE DAWLEY RATS / Florence Jhun F. Almadin, Joycelyn C. Jumawan / International Journal of Technical Research and Applications, Special Issue 19 (June, 2015), PP. 01-04
Chemistry and biology of ethanol extract from the epicarp of Crescentia cujete L. (totumo) / Espitia-Baena JE, Duran-Sandoval HR, Fandiño-Franky J, Díaz-Castillo F, Gómez-Estrada HA / Rev Cubana Plant Med 2011; 16 (4)
Anti-Mycobaterial Potential of Crescentia cujete (Bignoniaceae) / Manisha Agarwal* & Seema Chauhan** / International Journal of Advanced Research in Botany (IJARB), Volume 1, Issue 1, Jul-Sep 2015, PP 1-9
Evaluation of in vitro anti-inflammatory and antibacterial potential of Crescentia cujete leaves and stem bark. /
Parvin MS, Das N, Jahan N, Akhter MA, Nahar L, Islam ME / BMC Res Notes. 2015 Sep 4;8(1):412. / doi: 10.1186/s13104-015-1384-5.
Chemical constituents of sarcocarp of Crescentia cujete / YIN Wei, WU Pei-yun, LIANG Yi-min, LIU Jin-song, WANG Gang / Chinese Traditional Patent Medicine, 2012-08

It is not uncommon for links on studies/sources to change. Copying and pasting the information on the search window or using the DOI (if available) will often redirect to the new link page.

HOME      •      SEARCH      •      EMAIL